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ABSTRACT

--' The recording and subsequent analysis of evoked potential

activity has proven useful for the evaluation of neural dysfunction

resulting from impact acceleration injury involving the head

and neck. In animal impact acceleration experiments involving

Rhesus monkeys, somatosensory evoked potentials shoved an increase

in latency following nonlethal experiments. In order to assess

quantitatively and objectively the amplitude and duration of

the latency effect following impact acceleration, a nonlinear

mathematical model has been proposed. This technical report

describes a nonlinear regression procedure for fitting the

proposed model directly to empirical latency data. A FORTRAN

computer program listing is provided. -.
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1. INTRODUCTION

An important consequence of impact injury involving the head

and neck is the disruption of normal functioning of the central

nervous system. As part of its research effort on impact accel-

eration injury prevention, the Naval Biodynamics Laboratory (NBDL)

has conducted a series of experiments designed to test the

neurophysiological effects of indirect or inertial head-neck impact

acceleration. In these experiments, unanesthetized Rhesus monkeys

were subjected to peak sled accelerations in the -X direction and

somatosensory evoked potentials (EPs) were recorded prior, during,

and subsequent to impact. These experiments are discussed in

detail in Berger and Weiss [1].

A primary objective of these experiments was to determine

the extent to which impact produced shifts in latency of various

peaks of the (cervical) evoked potentials. Shifts in latency of

each peak were plotted as a function of time over the experiment,

relative to impact. Figure 1 gives an example of such a plot.

In order to quantitatively assess the amplitude and duration

of the latency effect following impact, the following exponential

model was proposed:

y = B + St + h(t)D + h(t)Aexp(t/T) + £(t) (1)

where:

y is the value of the shift in latency with respect to
the preimpact baseline average evoked potential (AEP)
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Figure 1. Example Plot of the Shift in Latency
as a Function of Time, Relative to Impact. (Taken
from Berger and Weiss [1].)

-2-

* *c--- ~~':s~ P- * P *..* ... *



t is the time relative to impact

S is the slope of the linear baseline shift

B is the amplitude value of the baseline instantaneously
prior to impact

D is the "permanent" shift induced by impact

A is the exponential amplitude

T is the exponential time coefficient

h(t) is the unit step function with value zero for t<O,
and unity for t>O

E(t) is the noise.

In Berger and Weiss [1], the linear baseline shift

parameters, S and B, were determined by applying simple linear

regression to the preimpact data. The linear equation was

extrapolated in the postimpact region, and residual values were

computed by subtracting out the linear equation component. However,

a regression procedure which would fit the model D + Aexp(t/T)

to the postimpact residuals was not available. Consequently,

an additional exponential term was introduced in lieu of the D

term, and the residuals were then subjected to a polyexponential

regression procedure. More specifically, the (postimpact) residuals

were fit to a regression function of the following form:

A1exp(t/T1 ) + A2exp(t/T 2).

The estimate of the "permanent" shift due to impact, D, was

-3-
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obtained from the amplitude coefficient corresponding to the

exponential term having a time coefficient (Ti) that was very

long in relation to the duration of the analysis interval. In

some cases a constant value was added to the data to ensure that a

term with a long time coefficient would be obtained.

In this Desmatics technical report we present an

alternative computational procedure for fitting model (1)

directly to empirical latency data. In addition, we give a

FORTRAN program implementing the proposed computational method.

Finally, we include an example which illustrates a direct

application of the methodology.
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2. METHODS

We can rewrite model (1) as

Y i =  f(t i, 2)  + c(t i) (i = 1 , 2 . ,n

where yi is the measured latency shift corresponding to the

known time ti , e(ti) is the random error component, n denotes

the total number of data points, and the vector e - (S, B, D,

A, T) consists of the 5 parameters to be estimated. Assuming

that the errors E(ti) all have zero mean, the expected responses,

denoted by E(y i), can be -epresented as:

E(yi) - f(ti , 2)

where f is of the form

f(t, 6) - B + St + h(t)D + h(t)Aexp(t/T). (2)

If we assume further that the errors c(t i) all have the same

variance and are uncorrelated, then it is reasonable to use the

least squares method to fit equation (2) to the data. That is,

we wish to find the estimate of e, say 0, which minimizes the sum

of squares

n 2Q( ) 1 £ y [ - f(tio )2

i'-5

". . ; - ) ' ., . . . . .' - ' -. . . - ' . . . '. ' -. . - . - . ' . .. . .. . " . . .- . . '. . . ,. ' .. " .' . . . . " - . '. -.-5 -'. , ' .. '



The proposed procedure is based on the following

approach. For known values of S and B, say s and b, we define

Yi(sab) - yi - b - st1. Note that

Er(b)] 0 if ti < 0

D + Aexp(ti/T) if ti > 0.

We will assume henceforth that the data has been ordered and

indexed so that t1 < t2 < t3 < ...< tn. In addition, we let n

and n2 denote the total number of preimpact (ti < 0) and postimpact

(ti > 0) data points, respectively.

It is clear that for known values of S and B the

parameters D, A, and T can be estimated from an analysis of the

postimpact residuals yi(sb), i > n . Accordingly, let D(s,b),

A(s,b), and T(s,b) denote the least squares estimates obtained

from fitting the exponential function D + Aexp(ti/T) to the

residuals yi(sb), i > n . [We assume temporarily that we have

a method at our disposal for computing D(s,b), A(s,b), and T(s,b).]

If we define

^ n 2
V(s,b) - Q(O(s,b)) Z [y1 - f(ti'-(sb))I

im1

where e(s,b) = (s, b, D(s,b), A(s,b), T(s,b)) we have the following

key result:
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Let s and b denote the values of S and B, ^
respectively, which minimize V(s,b). Then 8,
the^value of e which minimizes Q(_), is given

by 8 - (s, b, D(s,b), A(s,b), T(s,b)).

The significance of this result is that the stated problem of

minimizing a five-variable function can be reduced to that of

minimizing the two-variable function V(s,b). Of course, an

analysis of V will require that we have available a method for

fitting the exponential model D + Aexp(ti/T) to the-residuals

Yi(s,b) for some a and b, where i > n . In Section 3 a general

method for fitting an exponential growth and decay model with an

asymptote will be described. In Section 4 a method for

minimizing V(s,b) will be presented.

-7-



3. EXPONENTIAL REGRESSION WITH AN ASYMPTOTE

In this section we address the problem of finding the

estimate of X, say X i (XIX 2' X3) , which minimizes the sum of

squares

F(_ [zi - w(tiX)] (3)

i>n 1

where w(tiX) = X1 + X2 exp(X3 ti) and zi = Yi(s,b), with ti > 0.

The summation in (3) contains n 2 terms, one for each postimpact

data point. We will use a modified Newton's method to compute

the vector X.

Newton's method is a widely used, iterative method for

minimization and requires use of both the gradient vector and the

Hessian matrix in computations. The gradient vector consists of

all first-order partial derivatives of the objective function with

respect to the unknown parameters; the Hessian matrix consists

of all second-order partial derivatives. [For the sake of discussion,

we will assume that all first- and second-order derivatives exist

and are continuous.]

To provide further description of Newton's method, consider

a Taylor series expansion of the objective function, F(X), about

the point X.. This takes the form
-1

F(X) F(X i) + (A X _i)'gI + ( -  - -)'G i ( - - -i Ri

-8-

:-. .



approximate the function V(s,b) in the design region. If the

fitted surface is an adequate approximation of V, then analysis of

the fitted surface will be approximately equivalent to an analysis

of the actual function. An indication of lack of fit about the

fitted surface can be obtained by considering variation between

the observed responses (i.e., function evaluations) and the predicted

responses (i.e., fitted values) at the nine points which comprise

the CCD. The predicted responses v = (vi, v2 9 ... v )' are given

by

where X and 8 are as defined previously. A statistic which can be

used to measure lack of fit is the mean absolute residual (MAR)

defined by

9
MAR - ( v vi/-9v) /

i-i

where vI , v2,... ,v9 are the nine observed responses. The deviations

vi - vi represent the difference between the observed and fitted

values based on the second-order regression. The closer are the vi

to the vi , the smaller is the value of MAR, and hence the better the

approximation by the second-order response surface.

-22-



minimum on the estimated response surface is given by

x = - B-C
^2-

where C - (aI, 02)' and

- IA f312 542

B - [ 5/2j

In the original space, we have

s + F si

and

b =b + F b X2 .

It should be noted that under proper scaling of the design

region, the point (xI, x2) should be located somewhere within the

;2 +Ao2
design region (i.e., 1+ x2 < 2). However, if this point should

fall outside the design region, then a new CCD design should be

set up with (s, b), as defined above, as the center.

Lack of Fit

The second-order response surface given in (4) is used to

-21-



is fit to the nine responses (i.e., function evaluations) v1, v 2 ,...

v 9 corresponding to the nine points in the CCD. In matrix notation

we have

v" XS,

where v - (v1, v8,...,09 a 85)' and

11

1 -1 1 1 1 -1

1 -1 -1 1 1 1

X- 1 1 -1 1 1 -1

1 0 0 0 0 0

1 0 vT 0 2 0

1 -. 72-" 0 2 0 0

1 /2 0 2 0 0

1 0 - 2'2- 0 2 0

It follows directly that the estimate of the regression coefficients

is given by

8 = (X'X) X'v.

We can also show that the point x - " f' x2) which results in the

-20-
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where Fs and Fb represent scaling factors. In terms of the coded

variables, we have

s = + F sx 1

and

b b + F b x2

Thus, for example, the coded design point (xI, x2) (/2-, 0) corres-

ponds to the uncoded design point (s,b) - (9 + 2Fs,b).

Initial parameter estimates of the linear baseline shift

parameters, S and B, can readily be determined by applying simple

linear regression to the preimpact data. From this linear regression

one can also determine the standard errors of the estimates s and b.

These standard errors can be used to scale the design region. It

seems reasonable to define the scaling factors F and Fb as one-

tenth the respective standard errors of i and b. Additional comments

on the scaling of the design region will be given later in this

section.

As we indicated earlier, a second-order response surface in the

coded variables

v = + 1X11 + 82x2t + 3X 2 + 84x i + a5xX 2  (4)

-19-
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Figure 3. Central Composite Design For Two Variables



explores the parameter space by means of a geometric configuration

of points. Function evaluations are made at each point in the

design configuration, and a second-order response surface is fit

to the responses (i.e., evaluations) to approximate V(sb) in the

design region. An analysis of the fitted surface is then made

to determine the point which results in the minimum of the

estimated response function.
A

The statistical design we will use to determine (s,b) is

called a central composite design (CCD). A CCD for two variables,

x and x2, is illustrated geometrically in Figure 3. The design

consists of the nine following coded design points: (1,1), (-1,1),

(-1,-i), (1,-i), (0,0), (0,c), (-a,0), (a,O), and (0,-a), where

a - ,A The first four points are the usual factorial points for

fitting a first order model for two variables. The fifth point is

the center point of the design, and the four remaining points are

the axial points of the square. Notice that each variable is

measured at five coded levels: 0, 1, -1, a, and -(%.

The center point of the CCD design corresponds to our initial

estimates, which we will denote by 9 and b, of S and B. The coded

variables x1 and x2 are defined as

=, (s - ;)IFsa

and

x2 - (b - b

-17-



4. MINIMIZING V(s,b)

In this section we consider the problem of estimating the para-

meters S and B, the slope of the linear baseline shift and the

amplitude value of the baseline instantaneously prior to impact,

respectively. In Section 3 we assumed fixed known values, s and b,

for these parameters and outlined an iterative method for obtaining

least squares estimates of the postimpact parameters D, A, and T,

based on an analysis of the residuals yi(s~b) - y - b - sty, with

ti~ 0. Following the notation used in Section 2, let D(s,b), A(s,b),

and T(s,b) denote the least squares estimates obtained from fitting

the exponential function D + Aexp(ti/T) to the residuals yi(s,b),

i>n . We wish now to find the estimates 1 and b which minimize

the function

_A n A2

V(s,b) - Q(6(sb)) - J [yi - f(tie(sb))]

A A

where e(s,b) - (s, b, D(s,b), A(s,b), T(s,b)) and the summation

extends over all the data.

Because V(s,b) cannot be differentiated analytically and

because function evaluations (of V) are computationally demanding,

to determine s and G we will use a numerical method which (1) makes

no use of any of the derivatives of V, and (2) is highly efficient

with regard to the number of function evaluations it requires. The

proposed method is based on the use of a statistical design which

-16-

. . . . . .. . . . . ,. - . .. . .°. . o .: . .L : . - - . . --... - .i. . ? '. i . .- ' -. . -



interval in which the minimum is known to lie by a factor of r.

The width of the target interval at each iteration is

called the tolerance. A prescribed accuracy, a, can be achieved

for estimating X3 by repeating the golden section procedure until

the tolerance is less than or equal to a.

-15-
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Figure 2. Example of a Unimodal Function f(u).
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interval [x,, xu. A function f(x) is unimodal in the interval

x99 xu] if it has a unique minimum (maximum), occuring at x
in the interval, is a decreasing (increasing) function in the

interval [x,, x*], and is an increasing (decreasing) function in

the interval [x , Xu.

A complete discussion of the method of golden section can

be found in Keifer [3]. However, to illustrate the basic technique,

consider a unimodal function f(u) with a minimum in the interval

[u, u4] and consider the four points uI < u2 < u3 < u4 that

satisfy the spacing equations

u u 1  u u r(u4 -u I)

where r - 2/(1 + 7) = .618034. The two limits u1 and u4 are

fixed in advance and are known to bracket the minimum.

By testing the relative values of f(u1 ), f(u2), f(u3), and

f(u4), it is possible, since f is unimodal [see Figure 2, for

example], to determine in which of the two intervals [U1 , u3]

or [u2, u4] the minimum lies. Without loss of generality (note

that the intervals are of identical length), assume that the

minimum lies in the interval (uI, u3 ). The process is then

repeated in the target interval (u1, u3) by considering the

addition of a new interior point which satisfies the basic

spacing equations. Hence each subsequent iteration, which

involves one function evaluation, reduces the previous target

-13-
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-

convergence process, especially with quadratically convergent

methods such as Greenstadt's. We will now proceed to describe

K: a general method for obtaining initial parameter estimates of

~ XI 21 and A

Once again, consider the regression function

w(tIX) -X + X2exp(X3ti),

which we wish to fit to the set of data zi - Yi(sb)s i > nI.

Observe that for a fixed known value of X3 say A3, estimates

of and X2, call them and 2' can easily be determined via

a simple linear regression of the zi on A + A2t i where ti -
a1

exp(X 3ti). Accordingly, define

W( 3 )- Z [Zl - 1 X 2exp(3ti
i>nI

r I I 2 d 3 " Thus, an initial estimate of X'3

can be obtained by finding the value of 3 which minimizes W(O3 ).

The corresponding values of AI and 2 will provide initial
1 2

parameter estimates of XI and XA2"

To minimize the function W( 3), we will use the method of

golden section, which is a commonly used method for solving

optimization problems in one variable. This method assumes that

the objective function Is a unimodal function in a specified

-12-
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for j = 1

d(i,j) exp(X3ti )  for j - 2

tiX2exp(X 3ti) for J -3

and

tiexp(X 3ti) for J - 2, k - 3, and J = 3, k 2

h(ijk) t )X expGXt for J - 3, k - 3

0 otherwise.

Using these results, the components of the gradient vector of F(X)

have the form

-F(X)/DX -2 Z (zi w(ti,_))d(ij),
i>n1

and the components of the Hessian matrix of F(X) have the form

2a F(X)/aX A -2 Z (z -Ew(ti,))h(i,i~k)+ 2 E d(i,j)d(i,k).
- i>n i>nIJ1

Initial Parameter Estimates

As we have already noted, the proposed method of estimating

X requires initial parameter estimates of X1' X2' and X V

Reasonably good initial estimates should be provided, however, since

poor starting estimates can have a detrimental effect on the

A. -1 -



II

eigenvector, with vi 1. Define the matrix G as

, P ,
v V1

i Yi jij ij

where y max ( 1. 6) and 6 is a small positive number.

The matrix Gi is positive definite with inverse given by

,
- 1

= (YI) vijvl'"

Under the proposed modification, the general iterative scheme

is given by

i+ -X1 -ati ) - -

where the scalar ai, ati>0, is a step size factor introduced to

help avoid stepping across a minimum. In general, ai is selected

so that F(X_ +)< F(lX); usually, a, = 1 will suffice. Iterations

are carried out according to the general scheme until none of

the components of the vector X change by more than a negligible

amount.

For use in G eenstadt's method, we will now derive the

gradient vector and Hessian matrix of the objective function F(X)

given in equation (3). Let d(i,j) - 3w(ti,_)/aX and h(i,J,k)

a2w(ti'!)/aXk3Xj. It can easily be checked that

-10-



where is the gradient vector evaluated at X,,G is the Hessian
-

matrix evaluated at_-Xi' and Ri is the remainder. The terms in

the Taylor expansion, ignoring Ri p define a quadratic function

which will approximate F(X) when is close to X i" The stationary

point (i.e., a point at which the gradient vector vanishes) of

this quadratic function is given by the solution to the linear

system of equations

::: - - )

If G is positive definite and therefore invertible, this suggests

the general iterative scheme

This recursive relation defines Newton's method, although one

must generally provide an initial starting point AO . The method

normally displays a quadratic rate of convergence near a stationary

point.

A potential problem with Newton's method is that the Hessian

matrix may not be positive definite at each iteration; consequently,

several modifications have been suggested. Greenstadt [2] suggested

the following variant of Newton's method. Let y be the Jth

eigenvalue of the p x p matrix G i and vjj its corresponding

-9-
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5. AN EXAMPLE

In this section we illustrate by means of an example a

direct application of the methodology developed in Sections 2, 3,

and 4. In the Appendix we give a FORTRAN-77 listing of the

proposed nonlinear regression method. This program runs interactively

and was implemented on the Zenith-100 microcomputer. The program

can easily be converted to run on a mainframe computer or another

microcomputer which supports a FORTRAN compiler.

Cervical EP latency data was obtained from the Texas Research
1

Institute of Mental Sciences. Latency data of a selected EP peak

from Experiment #LX3009 (796 m/sec 2) is presented in Table 1. For

this data, each test AEP spanned 10.2627 seconds and was computed

by averaging a sequence of 50 EPs with a stimulus sampling rate of

4.872 Hz. Latency values are given starting at six minutes prior

to impact, continuing through impact, and ending fifteen minutes

after impact. The data is plotted in Figure 4. It should be noted

that the three data points marked by an asterisk (*) in Table 1

were identified as spurious data values and omitted from subsequent

analyses.

A baseline latency value of 3.865 ms was computed by averaging

the preimpact latency values. The shift in latency at each time

point was determined by calculating the difference between the

The author is indebted to Mr. William D. Burton, Systems Analyst at
the Texas Research Institue of Mental Sciences, for supplying the
latency data.

-23-
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Relative Latency Relative Latency Relative Latency
Time Latency Shift Time Latency Shift Time Latency Shift
(sec) (ms) (us) (sec) (ms) (11s) (sec) (m) ( )

-356.000 3.875 10. 64.772 4.025 160. 485.543 3.925 60.

-345.737 3.900 35. 75.034 3.950 85. 495.806 3.900 35.
-335.475 3.875 10. 85.297 3.950 85. 506.069 3.900 35.
-325.212 3.875 10. 95.560 4.000 135. 516.332 3.925 60.
-314.949 3.875 10. 105.823 3.975 110. 526.594 3.925 60.
-304.686 3.850 -15. 116.085 3.950 85. 536.857 3.900 35.
-294.424 3.875 10. 126.348 3.950 85. 547.120 3.925 60.
-284.161 3.875 10. 136.611 3.950 85. 557.383 3.900 35.
-273.898 3.850 -15. 146.874 3.925 60. 567.645 3.925 60.
-263.635 3.875 10. 157.136 3.950 85. 577.908 3.900 35.
-253.373 3.875 10. 167.399 3.925 60. 588.171 3.900 35.
-243.110 3.875 10. 177.662 3.925 60. 598.433 3.875 10.
-232.847 3.850 -15. 187.924 3.925 60. 608.696 3.875 10.
-222.585 3.850 -15. 198.187 3.925 60. 618.959 3.900 35.
-212.322 3.850 -15. 208.450 3.925 60. 629.222 3.925 60.
-202.059 3.875 10. 218.713 3.925 60. 639.484 3.875 10.
-191.796 3.875 10. 228.975 3.925 60. 649.747 3.900 35.
-181.534 3.825 -40. 239.238 3.925 60. 660.010 3.900 35.
-171.271 3.875 10. 249.501 3.925 60. 670.272 3.900 35.
-161.008 3.850 -15. 259.7 6 3  3.925 60. 680.535 3.850 -15.
-150.745 3.850 -15. 270.026 3.900 35. 690.798 3.900 35.
-140.483 3.850 -15. 280.289 3.875 10. 701.061 3.875 10.
-130.220 3.875 10. 290.552 3.900 35. 711.323 3.875 10.
-119.957 3.875 10. 300.814 3.925 60. 721.586 3.875 10.
-109.695 3.875 10. 311.077 3.900 35. 731.849 3.950 85.
-99.432 3.850 -15. 321.340 3.875 10. 742.112 3.875 10.
-89.169 3.875 10. 331.603 3.900 35. 752.374 3.875 10.
-78.906 3.875 10. 341.865 3.875 10. 762.637 3.850 -15.
-68.644 3.875 10. 352.128 3.900 35. 772.900 3.875 10.
-58.381 3.850 -15. 362.391 3.925 60. 783.162 3.875 10.
-48.118 3.875 10. 372.653 3.925 60. 793.425 3.900 35.
-37.856 3.850 -15. 382.916 3.925 60. 803.688 3.900 35.
-27.593 3.850 -15. 393.179 3.900 35. 813.951 3.875 10.
-17.330 3.875 10. 403.442 3.900 35. 824.213 3.875 10.

* -7.067 3.925 60. 413.704 3.875 10. 834.476 3.900 35.
, 3.195 4.025 160. 423.967 3.925 60. 844.739 3.875 10.
, 13.458 3.900 35. 434.230 3.900 35. 855.002 3.900 35.

23.721 4.050 185. 444.493 3.925 60. 865.264 3.900 35.
33.984 4.100 235. 454.755 3.900 35. 875.527 3.875 10.
44.246 4.000 135. 465.018 3.900 35. 885.790 3.850 -15.
54.509 4.050 185. 475.281 3.900 35.

Table 1. Cervical EP Latency Data of a Selected Peak: Animal 2
AR - 0761, Experiment #LX3009, Acceleration 796 m/sec -X
direction.
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latency value in Table 1 and the baseline latency value. These

shifts (see Table 1) and corresponding times were then analyzed

using the FORTRAN program presented in the Appendix.

In addition to the data, the user must also supply the program

with two values which bracket T - , where T is the exponential time
-1

coefficient in model (1). A lower bound of -.1 sec and an upper

bound of 0 sec were specified for T- . This is tantamount to

specifying that T < -10 seconds. There were 119 data points, of which

34 were preimpact and 85 were postimpact.

The final estimates of the five model parameters were as follows:

A

S M -.04658660 Psec/sec

B - -8.25491618 isec

A

D - 66.28035173 Psec

A - 223.59247934 psec

T - -65.27566084 sec

The estimate of root mean square deviation was 19.017 usec. The

2lack of fit statistic, MAR, for the CCD was MAR - 663.6 (Psec)2 ,

which was 1.6% of the residual sum of squares [i.e., V(s, b)].

A plot of the fitted curve is shown in Figure 5.

The data was reanalyzed using the seven minute time interval

starting at two minutes preimpact and ending five minutes postimpact.

There were 39 data points in this interval, of which 11 were

preimpact and 28 were postimpact. The estimated parameters were
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as follows:

S - -.10731488 psec/sec

B - -6.45739421 .sec

- 78.29595060 psec

A - 205.91875792 psec

T - -63.04820536 sec.

The estimate of root mean square deviation was 19.768 Usec.

The lack of fit statistic, MAR, for the CCD was MAR - 372.6

(sec) 2 , which was 2.8Z of the residual sum of squares.
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APPENDIX

IMPLICIT REAL*8(A-H,P-Z)
REAL*8 XD(600),YD(600),T(3),XX(600),YY(600),Z(6,9),T3LIM(2),

& X1(9), X2(9),YC(9),BETA(6),TPRE(3)
COMMON DELT, El, E2, MAXIT, MPRE, MPOST, XD, YD, T3LIM, TOL
DATA Z/O.0D0,2.0D0,2.0D0, 1.0D0, 1.0D0,4.0D0,
& 0.0OD01 -2.0OD0, 2.0OD0, 1.0OD0, 1.0OD0, -4.0OD0,
& 0.0D0, -2.0D0, -2.0D0, 1.0D0, 1.0D0, 4.0D0,

& 0. OD0, 2.OD0, -2.ODO, 1.ODO, 1.OD0, -4.OD0,
& 16.OD0, 0.0DO, 0.OD0, -8.0DO, -8.0D0, 0.OD0,& 0.0D0, 0.0D0, 2.0D0,-1.0D0, 3.0D0,0.0D0,
& 0. 0D0, -2.0OD0, 0.0OD0, 3.0OD0, -1.0ODS, S.0OD0,

& 0. OD0, 2. 0D0, 0. OD0, 3. ODO, -1. OD0, 0. OD0,
& 0.OD0,0.ODO, -2.0D0, -1.ODO, 3.OD0, 0.ODO/
Z (2, 7) =Z (2, 7) *DSQRT (2. OD0)
Z (2, 8) =Z (2, 8) *DSQRT (2. OD0)
Z(3,6)=Z (3,6)*DSQRT(2.0D0)
OPEN (6, FILE=' PRN' )
Z (3, 9) =Z (3, 9) *DSQRT (2. ODO)
DO 10 I=1,6
DO 11 J=1,9

11 Z (I, J)=Z (I, J)/16.0D0
10 CONTINUE
6 WRITE(*,7)
7 FORMAT(' A NONLINEAR REGRESSION PROCEDURE FOR EVOKED POTENTIAL',

& /' DATA ANALYSIS BY CARL A. MAURO, DESMATICS INC.,',
& /' PO BOX 618, STATE COLLEGE, PA 16804 (814-238-9621).',
& //' BASED ON DESMATICS TECHNICAL REPORT NO. 112-18',
& /9 PROGRAM FITS A REGRESSION FUNCTION OF THE FORM',
& /' Y=B+St+h(t)[D+Aexp(t/T)] WHERE:',
& //' t = TIME RELATIVE TO IMPACT(SECS)',
& /' Y = LATENCY SHIFT(MICROSECS) RELATIVE TO BASELINE AEP',
& /' h(t) = ZERO FOR t(O AND UNITY FOR t>=0',
& /' B = AMPLITUTE INSTATANEOUSLY PRIOR TO IMPACT(MICROSECS)',
& /' S = SLOPE OF LINEAR BASELINE SHIFT(MICROSECS/SEC)',
& /' D = SHIFT INDUCED BY IMPACT(MICROSECS)',
& /' A = EXPONENTIAL AMPLITUDE(MICROSECS)',
& /' T = EXPONENTIAL TIME COEFFICIENT(SECS)'//////)
PAUSE
WRITE (*, 8)

8 FORMAT(/////
& ' NOTE: (1) DATA IS READ FREE-FORMAT FROM THE FILE',
& /' WITH FILENAME DATA.EP',
& /' (2) EACH RECORD IN DATA.EP MUST CONTAIN THE TIME',
& /' IN SECONDS OF THE DATA POINT, FOLLOWED BY THE',
& /' CORRESPONDING Y VALUE IN MICROSECONDS',
& /9 (3) DATA ARRAYS ARE DIMENSIONED TO ACCOMODATE',
& /9 A MAXIMIMUM OF 600 DATA POINTS',
& /' (4) IN ADDITION TO THE DATA, USER MUST SUPPLY TWO',
& /' VALUES WHICH BRACKET THE RECIPROCAL OF T',
& ////' PLEASE INPUT LOWER LIMIT FOR 1/T (IN 1/SECS)')
READ(*,*) T3LIM(1)
WRITE(*, 53)

53 FORMAT(//' PLEASE INPUT UPPER LIMIT FOR l/T (IN 1/SECS)')
READ(*,*) T3LIM(2)
IF (T3LIM(2).LE.T3LIM(l)) GO TO 6

-30-

.... ... ... .- -- - - - - -. . . . . . . . . . . . . . . . . . . . . .



SF- I@. @DO
TOL=. Oft0I
DELT=2.** (-8)
E1=. 0001
E2=. 001
MAX IT=25
MPRE=O
M POST=0

C >)) > INPUT DATA
WRITE (*, 54)

54 FORMAT(/ READING DATA ..... 1)
OPEN (1, FILE=' DATA. EP')
DO 5 I= 1,601
READ(19*,END=15) XD(I),VD(I)

5 CONTINUE
15 14=1-I

CLOSE (1)
C ))))) SORT DATA

ND=M
NM=M-1
DO 20 I=1,NM
ND= ND- I
DO 21 J=1,ND
IF (XD(J).LE.XD(J+1)) GOTO 21
A=XDQ()
B-YD(J)
XD(J)=XD(J+1)
YD (J) =YD(J+ 1)
XD(J+1)=A
YD(J.1)=B

21 CONTINUE
20 CONTINUE

C ))))) SEPARATE PRE FROM POST IMPACT DATA
DO 30 I=11M
IF (XD(I).GE.O.) GO TO 31
MPRE=MPRE+ 1
XX (MPRE) =XD (1)
YY (MPRE)VD (1)
60 TO 30

31 MPOST=MPOST+1
30 CONTINUE

C )))>) CHECK FOR SUFFICIENT DATA POINTS
IF (MPRE.LT.3.OR.MPDST.LT.6) STOP 'INSUFFICIENT DATA'
WRITE(*, 55) MPRE, MPOST

55 FORMAT(/ NUMBER OF PREIMPACT DATA POINTS-'149
/9I NUMBER OF POSTIMPACT DATA POINTS=99I49/' COMPUTING ..... '9)

C ))))) COMPUTE INITIAL ESTIMATES OF BASELINE SLOPE AND AMPLITUDECINT)
CALL SREG(MPREXXgYYgBZ,91)

C ))))) COMPUTE ESTIMATED STANDARD ERRORS OF INITIAL BZ AND
91 (SDBZ, SDBI)

PSSE=0. ODS
XXBAR-O. ODS
DO 35 I-lMPRE
XXBAR-XXBAR+XX (I)

35 PSSE-PSSE+(YY(I)-BZ-B1*XX(I))**2
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XXBAR=XXBAR/MPRE
SD=DSQRT (PSSE/ (MPRE-2. DO))
SXX0. OD@
DO 36 I=1,MPRE

36 SXX=SXX+(XX(I)-XXBPR)**2
A=1. / (1.D@*MPRE)+(XXBAR**2) /SXX
SDBI-SD/DSQRT (SXX)
SDBZ=SD*DSQRT CA)

C )))START CENTRAL COMPOSITE DESIGN
C )))DEFINE DESIGN MATRIX
40 X1C1)=B1+SDB1/SF

Xl (2)=B1-SDB1/SF
X1(3) -Xl (2)
Xl (4)=X1 (l)
Xl (5)=Bi
Xl (6)=Bl
Xl (7) -B1-DSORT(2. 0D@)*SDB1/SF
Xl (8)=B1+DSORT(2.@DO)*SDB1/SF
Xl (9)=Bi
XC (1 )=BZ+SDBZ /SF
XC (2) -XC( 1)
XC (3) =BZ-SDBZ/SF
XC (4) =X2 (3)
XC (5) =BZ
X2(6) =BZ+DSQRT (2. ODS) *SDBZ/SF
X2(7)-BZ
X2(B)=BZ
XC (9) =BZ-DSQRT (2.ODO) *SDBZ /SF
DO 100 I=199
CALL EGAD(X1 (I), X2(I),T,YC(I))
IF (I.NE.5) SOTO 100
TPRE (1) =T (1)
TPRE (2) =T(2)
TPRE(3)=1. 0D@/T (3)

100 CONTINUE
C ))))) DETERMINE BETAS FOR QUADRATIC FIT

DO 105 I=196
BEI-A(I) =0. ODO
DO 116 J=199

110 BETA(I)=BETA(I)+Z(I, J)*VC(J)
105 CONTINUE

DETER=BETA (4) *BETA (5)-BETA (6) *BETA (6)/4. ODO
C ))))) DETERMINE STATIONARY POINT

STAT1-BETA(2)*BETA(5)-BETA(3)*BETA(6)/2.0D0
STAT 1--STATI/ (2. 0D@*DETER)
STATZ-BETA(3)*BETA(4)-BETA(2)*BETA(6)IC. ODS
STATZ--STATZ/ (2. 0DO*DETER)
WDB-DSQRT( CSTATZ**2+STAT1**2)IC. ODS)

C ))))) TRANSFORM TO ORIGINAL SPACE
STAT1.B1+STAT1*SDB1 /SF
STATZ-BZ+STATZ*SDBZ /SF
CALL EGAD (STATi, STATZ, TFSTAT)
RMS-DSORT CYC (5) /(M-5.(DDO))
WRITE (6,156) B1,BZTPRE(1),TPRE(2),TPRE(3),YC(5),RMS

156 FORPIAT(/////'1CENTER POINT OF CENTRAL COMPOSITE DESIGN:',
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& /I S=',F15.B,9/' B=',F15.81/' CONDITIONAL ESTIMATESi',
& /9 D-9 IF15. 81/1 A-',9F15. 8,/I T-1 ,F15. 89
& /I SUM OF SQUARED RESIDUALS=',F15.61
& /I ROOT MEAN SQUARE-'9F15.7)
RMS=DSQRTCFSTAT/ (M-5. OD0))
XMAR=. ODOb
DO 153 1=1,9
YCP=BETA(l)+BETA(2)*Xl(l)+BETA(3)*X2(I)+BETA(4)*XlCI)*Xl(l)
& +BETA(5)*X2(1)*X2(I)+BETACS)*Xl (I)*X2(I)
XMAR-XMAR+DABS CYC (I)-YCP)

153 CONTINUE
XMAR=XMAR/9. OD@
WRITE (6,160) STAT1,STATZT(1),T(2), £SDS/T(3),FSTATRMSXMAR

160 FORMAT(/////' FINAL ESTIMATES OF MODEL PARAMETERSi',
& /9 S=',F15.8,/' B='9F15.89/9 D=19F15.89/9 A-19F15.89
& /I T-9',F15.8,/' SUM OF SQUARED RESIDUALS-',FI5.61
& /9 ROOT MEAN SQUARE-',F15.79
& /I LACK OF FIT STATISTIC FOR CENTRAL COMPOSITE DESIGN.',
& ' MAR=',F15.6//)
IF (WDB.LE.DSORT(2.@D@)) GO0 TO 200
WRITE (6, 59)

59 FORMAT(' NOTE: STATIONARY POINT IS OUTSIDE BOUNDARIES OF',
& /I CENTRAL COMPOSITE DESIGN. DESIGN WILL BE RECENTERED',
& /9 AND NEW RESPONSE SURFACE FIT TO CSB) SPACE.',
& /I COMPUTING ..... 1)
Bi-STATI
BZ=STATZ
GO TO 40

200 STOP
END
SUBROUTINE EGAD(PSLP, PINT, TFUNY)
IMPLICIT REAL*S(A-H, P-Z)
REAL*8 X(600),Y(600),T(3),TH(3),YR(600),JM(600,3),TT(3),

& JR(3),G(393),D(3), Z(393),WK(3),Y(3,3,3),GMINV(3,3),
& XSL(600),XD(600),YD(600),T3LIM(2)
COMMON DELTE1,E2, MAXIT,MPREMPOST, XDYD, T3LIM, TOL

C ))))) FORM ADJUSTED POST IMPACT DATA ARRAYS
DO 4 I=1,MPOST
X (I)=XD(I+MPRE)
Y (I) -YD (I+MPRE) -PINT-PSLP*XD (I+MPRE)

4 CONTINUE
C ))))) COMPUTE STARTING ESTIMATES OF T(1),T(2),T(3)

A-T3Lrm(1)
B=T3LIM (2)
XMIN - A
IER - 129
IF (B .LE. A) GO0 TO 24
IER - 130
IF (TOL BGE. (B-A)) GO TO 24
ZER - 0
C (3. @DO-DSQRT (5. @DO) /2. ODO
H -C*(B-A)
VI - A+H
V2 - 9-H
FA - F(AX,Y)
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FB F F(B.;X 9Y)
FVI - F(Y1,XgY)
FV2 - F(V2,XgY)

5 CONTINUE
IF (A .GE. Vi DOR. Vi .GE. V2 OR. V2 BGE. B) GO TO 23
IF (F~i .GE. FV2) GO TO i0
IF (FV2 SGT. FB) 8O TO 25
B - V2
IF (TOL BGE. (B-A)) GO TO 15
FB - FV2
V2 = VI
FV2 - FV1
H - C*(B-A)
VI - A+H
FVi - F(V1,XgY)
GO TO 5

10 IF (FYI SGT. FA) 60 TO 21
A - Vi
IF (TOL .GE. (B-A)) GO TO 20
FA - FVi
V1 - V2
FVi - FV2
H - C*(B-A)
V2 w B-H
FV2 - F(V2,XY)
GO TO 5

15 XMIN - VI
IF (FA .LT. FV1) XMIN - A
60 TO 27

20 XMIN - V2
IF (FB .LT. FV2) XMIN - B
GO TO 27

25 XMIN w V2
A = Vi
80 TO 22

21 XMIN - VI
B m V2

22 IER - 131
60 TO 24

23 IER -132
XMIN -A
IF (F9 .LT. FR) XMIN -B

24 CONTINUE
IF CIER .EQ. 0) 60 TO 27
WRITE(*926) IER

26 FORMAT(' TERMINAL ERROR FROM 6OLDSECTION. ERROR CODE- ',13)
STOP

27 CONTINUE
T (3) -XMIN
DO 31 I-1,MPOST

31 XSL(I)-DEXP(T(3)*X(I))
CALL SRES(MPOST, XSL, Y, DINT, DSLP)
T (I) -INT
T(2)-BSLP

C )))START ITERATION LOOP
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DO 100 IIT=1,MAXIT
))))) COMPUTE RESIDUAL VECTOR CYR) AND JACOBIAN MATRIX (JM)

SS=e.
DO 30 J=1,MPOST
YR(J)=V(J)-T(1)-T(2)*DEXP(T(3)*X(J))
SS=SS+YR (J) *VR(J)
JM(J,1)=-1.
JM(J,2)=-DEXP(T(3)1X(J))
JM (J, 3) =-X (J) *T (2) *DEXP (T (3) *X (J))

30 CONTINUE
)))FORM MATRIX PRODUCT JR-(TRAN OF JM)*YR

JR (1) =0.
JR(2) =0.
JR (3) =0.
DO 35 J1I,MPOST
JR(1)=JR( 1)-YR (J)
JR(2) =JR (2) +JM (J, 2) *YR (J)
JR(3)=JR(3)+JM(J, 3)*YR(J)

35 CONTINUE
))))) COMPUTE HESSIAN MATRIX (6)

DO 40 I=193
DO 45 J-113
G(IjJ)=e.
DO 50 L=1,MPOST
G (1,J)=G (IIJ) +JM(LI 1) *JM (LI J)
IF (I+J.EQ.6)G(IJ)=(IJ)-R(L)*X(L)*X(L)*T(2)*DEXP(T(3)*X(L))
IF (I+J.EQ.5) 6(IJ)=G(IJ)-YR(L)*X(L)*DEXP(T(3)*X(L))

50 CONTINUE
45 CONTINUE
40 CONTINUE

))))) CALCULATE INVERSE OF MODIFIED HESSIAN MATRIX
CALL EIGRS (6,3, 11,D, Z,3,WK, IER)
DO 60 J=193

60 D(J)=DMAX1(ABS(D(J)),DELT)
DO 62 1=1,3
DO 63 J=113
DO 64 K=193

64 V (I, J, K)=-Z (J, 1) *Z (K, I)
63 CONTINUE
62 CONTINUE

DO 65 J-1j,3
DO 66 K=193
GMINV (J, K) =0.
DO 67 I=193

67 GMINV(JK)=GMINV(JK)+V(IJK) ID(I)
66 CONTINUE
65 CONTINUE

))))) UPDATE ESTIMATES
DO 70 1-1,3
TH(I)-O.
DO 75 J-193

75 TH(I)-TH(I)+GMINV(I, J)*JRCJ)
710 CONTINUE

))>)) STEP SIZE CALCULATION
ALP-2.
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ALP=ALP/2.
DO 81 J=l1, 3
TT(J)=T(J) -ALP*TH(J)
CONTINUE
SST=O.
DO 82 J=lMPOST
S1=Y(J)-TT(1)-TT(2)*DEXP(TT(3)*X(J))
SST=SST+S 1*S1
CONTINUE
IF (SST.LT.SS) SOTO 85
I=I+1
IF (I.ED. 10) SOTO 85
GOTO 80

5 CONTINUE
))))) CHECK FOR TERMINATION

ITERM-1
DO 90 I=1,3
FI=ABS(T(I)-TT(I))
F2=El*(ABS(T(I) )+E2)
IF (F1.GT.F2) ITERM=O
T(I)=TT(I)

b CONTINUE
IF (ITERM.EQ.l) GOTO 101

DO CONTINUE
61 IF(ITERM.EQ. 1) NITT=IIT

IF(ITERM.EQ.0) STOP 'MAX ITERATIONS EXCEEDED IN POST MODULE'
FUN V=O.
DO 150 I=1,MPRE
FUNV=FUNV+(YD(I)-PINT-PSLP*XD(I) )**2

50 CONTINUE
DO 160 J=1,MPOST
I =J+MPRE
A=PINT+PSLP*XD( I)
B=T(1)+T(2)*DEXP(T(3)*XD(I))
FUNV=FUNV+ (VD(I) -A-B) **2

50 CONTINUE
RETURN
END
SUBROUTINE SREG(N, XY, DINT, BSLP)
IMPLICIT REAL*8(A-H, P-Z)
REAL*8 X (600),YV(600)
XBAR=O.
VBAR=0.
DO 5 I=11N
XBAR=XBAR+X (I)
YBAR-YBAR+V (I)
CONTINUE
XBAR=XBAR/N
VBAR=YBAR/N
A-0.
B-O.
DO 10 I=19N
C-X(I)-XBAR
A=A+Y(I)*C
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B=B+C**2
*10 CONTINUE

BSLP=A/B
BI NT=YDAR-BSLP*XBAR
RETURN
END
SUBROUTINE EIGRS (A, N, JOBN, D, ZIZWK, IER)
DOUBLE PRECISION A(9),DC3),WK(3),ZC3,3)
INTEGER N,JOBN, IZIER.;IJJI
INTEGER JER, NANDlIZ, IJvK
DOUBLE PRECISION TEN, ZERO, ONE, THOUS
DATA ZERO, ONE/S. ODS,1. SDO/, TEN/iS. SDS/,THOUS/ISS@O DS/
IER = 0
JER = S
K= 1
.71 N-i
IJ I
DO 10 J=19N

DO 5 I=19J
A(K) = A(IJ)

K =K+1

5 CONTINUE
IJ = IJ + .71
.71 - J - 1

*10 CONTINUE
NA - (N*(N.1))/2
ND = I
CALL EHOUSS (ANDWK,WK)
IIZ = IZ
DO 55 I=1,N

DO 50 J=1,N
Z(I.,J) = ZERO

50 CONTINUE
Z(II) = ONE

55 CONTINUE
CALL EQRT2S (D,WKgNsZIIZIJER)
IF (JER.GT. 128) GO TO 9000
CALL EHOBKS (AN,1,N,Z,IZ)

9000 CONTINUE
IF (JER.EO.O) GO TO 9005
STOP 'NOT ALL EIGENVALUES COULD BE COMPUTED'

*9005 RETURN
END
SUBROUTINE EHOBKS (ANlM1,M2,Z, IZ)
DIMENSION A(9), Z(393)
DOUBLE PRECISION A,ZHoS
DO 25 I=21N

L -1-1
IA =(I*L)/2
H =A(IA+I)
IF (H.E()O..D0) GO TO 25
DO 20 J = MIM2

DO 10 K -19L
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S =S4A(IA+K)*ZCK,J)

10 CONTINUE
S - S/H
DO 15 K=lL

Z(K,J) - ZCKJ)-B*A(IA+K)
15 CONTINUE
20 CONTINUE
25 CONTINUE

RETURN
END
SUBROUTINE EHOUSS (ANDqEE2)
DIMENSION A(9),DC3)qEC3),E2(3)
DOUBLE PRECISION A, DE, E2,ZERO, HSCALE, ONE, SCALEI, F, 6,HH
DATA ZERO/S. 0D@/, ONE/I. SD@/
NP1 - N+1
NN - (N*NP1)/2-1
NBEG = NN+1-N
DO 70 11 = 19N

I = NPI-Il
L 1 -1
H =ZERO
SCALE = ZERO
IF (L .LT. 1) 60 TO 10
NK - NN
DO 5 K = 19L

SCALE = SCALE+DABS CA NK))
NK = NK-1

5 CONTINUE
IF (SCALE .NE. ZERO) GO TO 15

I0 ECI) =ZERO

E2(I) mZERO

6O TO 65
15 NK =NN

SCALEI ONE/SCALE
DO 20 K -1,L

ACNK) =A(NK)*SCALE1
H =H+A(NK)*ACNK)
NK =NK-1

*20 CONTINUE
E2(I) = SCALE*SCALE*H
F = A(NN)
6 - -DSIGN(DSORT(H),F)
E(I) - SCALE*G
H - H-F*G
A(NN) = F-6
IF (L .EQ. 1) SO TO 55
F = ZERO
JK1 - I
DO 40 J -1,L

6 ZERO
IK - NBEG+1
JK - JKI
DO 25 K - 1,J

6 - +ACJK)*ACIK)
JK -JK+1
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IK -IK+l
25 CONTINUE

JP1 = J+1
IF (L .LT. JPI) GO TO 35

DO 30K= P9

JK-JK JJ-l

30 CONTINUE
*35 E(J) = 6/H

F - F+E(J)*A(NBEG+J)
JKI - JKl+J

48 CONTINUE
HH - F/(H+H)
JK - 1
DO 50 J - 1,L

F = A(NBEG+J)
6 = E(J)-HH*F
E(J) = 8
DO 45 K = lJ

A(JK) -A(JK)-F*E(K)-G*A(NBES+K)
JK = JK+1

45 CONTINUE
50 CONTINUE
55 DO 60 K-=19L

A(NBE6+K) - SCALE*A(NBEG+K)
60 CONTINUE
65 D(I) = A(NBEG+I)

A(NDEG+I) - H*SCALE*SCALE
NBEG NBEG-I+1
NN - NN-I

70 CONTINUE
RETURN
END
SUBROUTINE EGRT2S (DEN, Z, IZ, IER)
DIMENSION D (3),qE (3),9 ZC(393)
DOUBLE PRECISION D, E, ZBC, F,6, H, PR, 5,RDELP, ONE, ZERO
DATA ZERO, ONE/S. OD@, .@D@/
rER - 0
RDELP-2. *.(-52)
DO 5 1=21N

E(I-i) E (I)
5 CONTINUE

E(N) - ZERO
B - ZERO
F - ZERO
DO 68 L-1,N

j -
H - RDELP*(DABS(D(L))+DABS(E(L)))
IF CB.LT.H) B - H
DO 10 M-L,N

K-M
IF (DABS(E(K)) .LE. B) GO TO 15

is CONTINUE
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15 M - K
IF CM. EQ. L) 8O TO 55

20 IF (J .EQ. 30) 60 TO 85
J - J+i
Li - L+i
8 = D(L)
P = (D(Li)-6)/(E(L)+E(L))
R =DSGRT(P*P+ONE)
D(L) a ECL)/CP+DSIGNCRgP))
H a 6-DCL)
DO 25 1 - LiN

D(I) = D(I)-H
25 CONTINUE

F -F+H
P - DCM)
C -ONE
S - ZERO
MMI = M-i
MM1PL = MM1+L
IF CL.GT.MM1) 80 TO 50
DO 45 II=LvIIi

I =MM1PL-II
8 = C*ECI)
H =C*P
IF CDABSCP).LT.DPDSCECI))) GO TO 30
C -ECI)/P
R = DSQRTCC*C+ONE)
ECI+i)= S*P*R
S C/R
C-ONE/R

GO TO 35
30 C = P/E(I)

R = DSGRTCC*C+ONE)
EC1+i) - S*ECI)*R
S -ONE/R
C - C*S

35 P - C*DCI)-S*G
DCI+i) = H4S*(C*G+S*DCI))
IF CIZ .LT. N) GO TO 45
DO 40 KiniN

H = ZCKI+i)
ZCK,I+i) - S*ZCKI)+C*H
ZCKjI) - C*ZCKI)-S*H

40 CONTINUE
45 CONTINUE
50 ECL) - S*P

D(L) a C*P
IF CDABSCECL)) SGT.B) GO TO 20

55 D(L) - DCL) + F
60 CONTINUE

DO 80 1-1,N
K - I
P - DCI)
IPI - 1+1
IF IP1.GT.N) 60 TO 70
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DO 65 J-IP1,N
IF (DC(J) . BE. P) 8O TO 65
K J
P D D(J)

65 CONTINUE
70 IF CK.EG.I) 60 TO 80

D(K) -DCI)

D(I) -P
IF CIZ .LT. N) 60 TO 80
DO 75 J - LIN

P - ZCJI)
ZCJ,I) -ZCJK)

Z (Jq K) -P

75 CONTINUE
80 CONTINUE

GO TO 9005
85 IER - 128+L

9000 CONTINUE
9005 RETURN

END
DOUBLE PRECISION FUNCTION F(AvXY)
IMPLICIT REAL*S CA-H, P-Z)
REAL*8 X (600) ,Y (600),XX (60)
COMMON DELT, El, E2,MAX ITMPRE, MPOST, XD, YDT3LIM, TOL
YBARO6. Db
DO 5 I-1lMPOST
YDAR-VBAR+V CI)

5 XXCI)=DEXPCA*XCI))
F-6. 0DO
IF CA. EG.O.0DO) GO TO 100
CALL SREG CMPOST, XX, VINT, BSLP)
DO 10 1-19MPOST
F-F+CYCI)-BINT-BSLP*XX CI) )**2

10 CONTINUE
RETURN

100 YBAR-YBAR/MPOST
DO 20 I-1,MPOST

20 F-F+CY(I)-YBAR)**2
RETURN
END
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